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Semantic Segmentation: Motivation (V]

Task: Assign a semantic class to each pixel in an image

Road Sidewalk Building - Fence
B Pole P Vegetation B Vehicle B Unlabel




Semantic Segmentation: Motivation (V]

Applications

- autonomous vehicles

- medical analysis

- specific classification tasks




Current State of the Art: UNET

State of the art approach:
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Our Approach: Motivation U

Big Neural Networks & CNNs are Great!

BUT

They are huge, often in the Millions of parameters. Image data is very
high-dimensional. Because of this:

e [hey have very long training time.
e They need lots of training data.
e |nference isn't super fast.




Our Approach: Goal W

Create a smaller, simpler semantic segmentation
algorithm that trains faster.

BY

Simplifying the semantic segmentation task.
Applying MASSIVE dimensionality reduction.




Our Approach: Multiscale Sliding Window
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Our Approach: Multiscale Sliding Window 0,




Our Approach: Texture Dimensionality Reduction using PCA @’}

AT R e
SHESNEE DS
5 5 5 5 T
0 4 O 2 O
SN S
B S o
EEEENERaE

Use PCA Coefficients as input to a predictive model.
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Our Approach: Dimensionality Reduction using PCA
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Our Approach: Dimensionality Reduction using PCA
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Our Approach: Encoding

———> A0 PCA Coefficients from Chawmel 1

— 30 PCA Coefficients from Chawnel 2-
—> 10 PCA Coefficients from Chawvel
——3 + Other Metadata

Predictor
(Neural Ne+t)
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Our Approach: Encoding
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Our Approach: Prediction \)

NN Architecture

3 Dense layers
Mean Squared Logarithmic Error loss function

Adam optimizer with a learning rate of 0.0001
Judged in terms of Accuracy metrics.

Trained for 20 minutes.
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Our Approach: Limitations & Constraints \)

e \We use the Full-Resolution 2048 x 1024 images

e Coarse Segmentation

e No Corners




Task: Cityscapes

Goal: classify objects within the city

Inspiration: Self-driving cars




Results: Model Size @

Our Model Size vs UNET

e Our model contains a total of 47,998 parameters.
e UNET’s model contains a total of 2,060,424 parameters.

Model: "sequential”

Ifyer‘ (type) Output Shape Param # up_sampling2d_6[0][8]
e R e T e e 2d_7
dense (Dense) (None, 64) 44928 penvad_2[0l P}
dense_1 (Dense) (None, 32) 2080
(None, 512, 512, 8) 2312
dense_2 (Dense) (None, 30) 990
Total params: 47,998 Total params: 2,060,424
Trainable params: 47,998 Trainable params: 2,056,648

Non-trainable params: © Non-trainable params: 3,776




Results: Time to Train

Our Model Training Time vs UNET

Our model took 20 minutes to train vs UNET’s 400 minutes to
train.

Our model trained utilizing 30% of a laptop processor,
specifically the i/ 8/750H.

UNET’s model trained utilizing an unspecified gpu.
Although we do not know UNET’s gpu, it is likely a lot more
powerful than a cpu in terms of training neural networks.



Results: Accuracy

Our Model Accuracy vs Ground Truth
Caveat: Coarse

Our Model’s accuracy after 20 minutes of training:

o 47,998 Parameters: 82.79%
e 203,630 Parameters: 90.08%
e 845 982 Parameters: 93.04%

UNET’s pixel-wise segmentation model’s accuracy: 91.69%



Results: Successes

Foliage Road Sidewalk
Foliage Road Sidewalk




Results: Areas of Improvement

Person Pole
Person Car Pole
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Future Work

e Corners

e Pixel-Wise segmentation



Thank You!
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